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The high deformability of a number of the mesh structures must be taken into account when 
mesh-reinforced composites with a metal powder matrix are compacted by pressing or rolling. 
In particular, metal-weave reinforcements with a knit structure are highly deformable [i]. 
During joint deformation of the powder matrix and such meshes the latter manifest a certain 
susceptibility, especially in the early stages of compaction. In view of this it is of in- 
terest to ascertain how the introduction of a mesh affects the energy and strength parame- 
ters of the processes and, in the final account, the macrogeometry and properties of the 
composite. It is also important to determine the strain and force in the mesh during de- 
formation. 

Some technological processes of pressure working of the composites under discussion 
were analyzed in [2], where the conditions at the boundaries of a representative element 
(the stressed--strained state which was used to determine the stress, velocity, and density 
fields in the entire volume worked) place strict limitations on the scheme of technological 
processes, which can be described with this model. In particular, the stressed--strained 
state and, hence, the density as well should be macroinhomogeneous and inhomogeneity occurs 
only inside the representative element. 

I. General Assumptions. We propose a mathematical model of a composite, the proper- 
ties of whose matrix and reinforcement mesh make it possible to construct the solutions of 
any boundary-value problems by the methods of continuum mechanics that are applicable to 
the entire volume deformed. With a known mechanism of interaction between the matrix and 
unidirectional reinforcement elements the proposed treatment can be used to describe the 
deformation processes of composites with other forms of reinforcement. We consider the 
joint flow of a powder matrix and a metal weave much during production of sheet composites 
in which the mesh is much thinner than the characteristic size of a deformation center. We 
can thus disregard the thickness of the mesh, which can be taken to be an arbitrary rein- 
forcing monolayer and in the calculations can be considered as the discontinuity surface of 
the properties of the matrix material. The solution of the corresponding boundary-value 
problem will also be discontinuous. 

Since the real geometry of the mesh forms a cellular framework in some volume of the 
reinforcing monolayer, conditions are created for continuous displacement of the monolayer 
and matrix powder at their contact line. Such a scheme was also adopted in [3] for a mesh 
with a woven structure. 

Henceforth we confine the discussion to an orthotropic mesh under the conditions of 
plane deformation (E z = 0), assuming that one of the principal directions coincides with the 
z axis. In this case the properties of the mesh can be determined from one diagram associat- 
ing the relative elongation along the principal direction perpendicular to the z axis and 
the force applied in that direction. This diagram can be obtained either experimentally or 
theoretically [4, 5]. Since the stress--elongation relation generally should include the 
current porosity of the matrix and a complete set of experiments is obviously very difficult 
to carry out, in our view it is preferable to determine this relation theoretically. We 
note that the stress--strain diagram of the mesh is very nonlinear [4, 5]. 

The structure of the knit mesh is such that the displacements of the monolayer and the 
matrix at their contact line can be considered to be continuous [3]. This assumption is 
sufficient for building a definite system of equations, which consists of equations that de- 
scribe the flow of the matrix [6], the relation between the force and the elongation of the 
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Fig .  1 

mesh [5], and the condition for continuous displacements along the monolayer--matrix contact 
line. We note that in the general case the final strains must be considered for any model 
of the matrix material because of the presence of the mesh. 

2. The Extrusion Process. As the operating scheme describing the compaction of the 
reinforcing monolayer, we study the steady-state extrusion of a viscous matrix and reinforc- 
ing monolayer under plane deformation (Fig. i). Half of a deformation center is shown in 
Fig. i because of symmetry considerations. The surface of the tool is assumed to be ideally 
smooth, i.e., the frictional forces on the surface of the tool can be ignored. The flow of 
the powder matrix is described by the equilibrium equation, the flow law, and the continuity 
equation. 

We introduce a cylindrical coordinate system r, $, z. The solution will be sought on 
the basis of the following assumptions: the deformation center is delineated by the lines 
r = rl, r = r 2, and the velocity v$ = 0. This assumption should be satisfied well for small 

angles v$, since v$ = 0 on the surface of the tool and the symmetry axis from boundary con- 

ditions. The other quantities do not depend on the polar angle $. 

We write the equilibrium equation on the basis of the method of Hill [7]. With the 
assumptions made we obtain 

d(roT) +-1-~= O, (2.1) 
dr ~ ~o 

where o r and o~ are the normal stresses in the matrix; and T is the shear stress in the 

matrix at an arbitrary contact line. The equations of flow have the form [6] 

9p (2.2) 

Here oij are the components of the stress tensor; Eij are the components of the rate-of- 

strain tensor; e is the specific rate of change in volume; v is the bulk viscosity; ~ is 

the shear-viscosity coefficient; and .6ii is the Kronecker symbol. With the assump- 
tions made we write the expressions f6r the components of the rate-of-strain tensor 

as er = dv/dr, e# = v/r, the other components being zero (v = v r is the radial velocity). 

The specific rate of change in volume is e = dv/dr + v/r. 

Equations (2.2) can now be rewritten as 

~r = V+.~p -tiT+ V-- 3] r, Om= .~'--2 7F + v+ 7" 

By virtue of the steady-state nature of the flow the continuity equation is 

v dO dv v 
-~ d~ + - 2 ;  + T = ~  

(2.3) 

(2.4) 

(9 is the relative density). 
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The relation between the force P stretching the mesh in the direction of the r axis 
and its relative elongation A from the undeformed state in the general case has the form 
P = f(A). This equation, taking into account the specific structure of the knit mesh and 
the properties of the wire material, was obtained numerically, e.g., in [5]. This is the 
form we use below. 

For the compaction scheme under discussion (see Fig. i) the relative elongation can 
be expressed in terms of the particle velocity. The law of motion of any point of the rein- 
forcement layer is determined by r = r(a, t) (a is the Lagrange coordination of the point 
and t is the time). The relative elongation then is 

A = Or/Oa - -  1. ( 2 . 5 )  

The condition for the continuity of the velocity on the contact line implies that 

dr/dt = v(r), 

whence the law of motion of the point can be determined from 

r 

Differentiation of this equation gives us 

Or (OF/Oa) 
Oa (OF~Or) 

v(r) 
~ , ( a )  " 

Then from Eq. (2.5) we get 

A = v(r)/v(a) - -  I ,  ( 2 . 6 )  

where V (a) is the velocity upon entry into the deformation center (we assume that up until 
then the mesh had been in the undeformed state); and v(r) is the velocity of the point at a 
given place in the deformation center. 

Taking (2.6) into account, we write the relation between the force in the mesh and the 
particle velocity is 

We d e t e r m i n e  t h e  r e l a t i o n  b e t w e e n  t h e  s t r e s s e d  s t a t e  o f  t h e  mesh  a n d  t h e  m a t r i x .  W i t h  t h e  
a s s u m p t i o n s  made t h e  e q u a t i o n  o f  t h e  v i r t u a l  p o w e r s  f o r  a n y  e l e m e n t  d r  n e a r  t h e  s y m m e t r y  
axis (see Fig. i) has the form 

r-~-dr 6cp r + d r  bop 

i + = - i S + 
r 0 r 0 

~- .t" ((~ 4- d(J~) (r 4- dr) v (r 4- dr) dq). 
0 

Making ~ tend to zero, we obtain 

r-~-dr r~-dr  

r r 

xc'dr - - P  (r) v (r) § P (r -b dr) v (r 4- dr) 

( 2 . 8 )  
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We integrate the left side of Eq. (2.8) by parts: 

r+dr r+dr 

-- ~ vdr = -- Tvdr -- P (r) 
r T 

v (r) -~- P (r -[- dr) v (r ~- dr). 

In view of the arbitrary nature of v and the interval of integration over r, we find 

dP 

dr r----O. ( 2 . 9 )  

We thus have a system of equations (2.1), (2.3), (2.4), (2.7), (2.9) in the unknowns Or, or 

~, v, p, and P with the boundary conditions v = --v0, p = P0 for r = r 2 and P+orr1r 0 = 0 

for r = r I. The continuity equation (2.4) has the integral pvr = --P0v0r2 = c, whence we 

find 

p = c/(vr). (2 .1~ )  

Substituting (2.7) into (2.9), we express �9 in terms of the velocity v: 

I dl dr, ( 2 . 11 )  T== 
v o dA dr" 

To find v from (2.1) with allowance for (2.3), (2.10), and (2.11) we obtain the differential 
equation 

( ) r v+-~ d~ ~ ?- !--~ + 3 dp/',d~J -- W ,-~- +-~-~- - -  

-'-~ ea -jF-- ~-~ 3 dp "7-- v + - $ 1  a 7 = 0  r 

and the boundary conditions v = --v 0 for r = r 2 and 

(2.12) 

for r = r I . We assume the dependence of ~ and v on the relative density to be 

4 pS o 
V=po  3 ( t - - p ) '  ~ = F~  (2.13) 

We estimate the order of the terms in (2.12). For the characteristic values we take 
v 0 for the velocity, r 2 for the length, r/v 0 for the time ~0r2/v0 for stressses in the 

matrix, P, for the force in the mesh per unit length (P, is the force which the plastic 

strains of the fibers become significant), and s, for the strain of the mesh (~, is the 

strain in the mesh under the force P = P,). 

Then Eq. (2.12) can be written in dimensionless quantities as 

4 , dv t 
r (v + ~ t~ } ~ / .  L ~ -g - -  

( 4 ) (  P. ) , dP] dr; ( ' 13o ( 4 ) v 
T 

v' -- dv , , d~ 
dp ' alp" 

= o, ( 2 . 1 4 )  
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The previous notation is kept for the dimensionless quantities. Wel have p = -p0/(vr) 
in the expressions for p and v. 

From Eq. (2.14) we see that the effect of the mesh on the distribution of the particle 
velocity and, hence, the stressed--strained state is determined by the values of the dimen- 
sionless complex 

~o%%e* 

For an "elastic" type of mesh, made of steel and copper wires, P, = 102 N/m, E, = 1 [5], 

the viscosity P0 = 101~ Pa-sec [6], and the velocity of the piston during extrusion is v 0 = 

10 -2 m/sec [9]. Thus, for the process under consideration we have 6 = 10 -6 for @0 = i. From 

this we see that the introduction of pliable metal-weave meshes does not significantly affect 
the distribution of the velocities and, hence, the stressed--strained state and density in 
the matrix. The processes of deformation of the matrix and mesh can thus be considered sep- 
arately: first we determine the fields of all the physical quantities from the solution of 
the problem of deformation of the powder matrix and then we use (2.7) with the determined 
velocity field to calculate the force in the mesh. Equation (2.14) becomes much simpler when 
the term due to the presence of the mesh is discarded. 

We introduce the notation u = vr. Then, to determine u we obtain from (2.14) the 
expression 

2 d2u ' B(dul2 [a _-- 
a i r  dr -- ' '~ - -  P~ ~ dr ] ~ 1 

4 ' da l .  
where a 1--v-~--$V; ax----~--, 1~ = ~t(u); and v = v ( u ) .  

2 ~ ' )  du 
r - ~ - r = O  , 

S u b s t i t u t i n g  z 1 = i n  r a n d  u = u ( z l ) ,  

a~ dz---~1 _ poal ~ d5 ] 2 a~ - -  ---j-- / d~-'-~, 

We take u to be an independent variable, whereupon the last equation becomes 

% du + 2  t - -  alu ] \ d ~ ]  = 0 .  

Setting dzz/du = y, we arrive at the Riccati equation 

' ( ) dy Poa~ Y pop/ -ZE+ a--~-- + 2  1--  %u y~=O,  
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which the substitution y = x -i reduces to the linear equation 

( ;I dx 'D~ x - - 2  t - -  Oo~ 
d--~-- a i ai ~ ]----0. (2.15) 

We determine z i from the equation 

dzl ---- x-*. (2.16) 
du 

The solution of the system (2.15), (2.16) can be written in quadratures. The boundary con- 
ditions have the form z i = 0 for u = --i and x = (a i - b)$/a i for u = $ ($ is the value of 

the function u at the exit from the deformation center, b = v - 2D/3). 

The solution of Eqs. (2.15) and (21.6) is written as 

x = e x p ( - - F )  L \ ~ / ~  -~2 1-- aiu 

u 

d (in %) 
F = - - P o j ~ d u ,  

(a  i - b ] ~ + 2  i - -  p~ exp(F) du. exp(F) L \ _ _ /  ~ . Z 1 

--i a I u 

We find $ from 

l n q =  exp(F) \ - - - ~ i  / ~=g~+2 t - -  a~u / 
- 1  

If ~ and v are determined by Eq. (2.13), then 

du. 

F = ($2_2 u2) ,-~P02]n( P0--~i ~_ (P0 .-5 ~)2 -- (90 -~u)" 
\ po--u] 2 , 

l n r = z  i =  fexp(F) (~--Po)+ --i exp(F) du du, 
-1 

In "l = ~ exp (F) (~ -- Po) + .[ 30~ I e.~p (F) du du. 

The results of calculations for this case are given in Fig. 2 (dependence of the veloc- 
ity of outflow of the material and the density of the product on r i (curves i, 2) and the 
force in the mesh along the deformation center for various parameters of the "elastic" weave 
mesh (curve 3). This type of weave is characterized by the parameter 8 o [5]. In Fig. 3 

curves i, 2 correspond to e 0 = 1.484 and 0.904. These graphs can be used to determine the 

critical deformation center size r, at which the material of the mesh undergoes substantial 

plastic deformations, thus degrading the properties of the product. In particular, r, = 0.55 

for 8 o = 1.484 and r, = 0.72 for 8 o = 0.904. 

LITERATURE CITED 

. 

2. 

3. 

D. M. Karpinos, L. I. Tuchinskii, and L. R. Vishnyakov, New Composites [in Russian], 
Vishcha Shk., Kiev (1977). 

L. I. Tuchinskii, Solid-Phase Compaction of Reinforced Metals [in Russian], Naukova 
Dumka, Kiev (1980). 

V. V. Vasil'ev and Yu. M. Tarnopol'skii (eds.), Handbook of Composites [in Russian], 
Mashinostroenie, Moscow (1990). 

143 



. 

5. 

0 

7. 

8. 

9. 

S. Tan, R. Boyle, J. Whiteside, and R. Anderson, "Nonlinear stress--strain relation for 
metal meshes," Raket. Tekh. Kosmonavtika, No. 6 (1980). 
L. P. Vishnyakov and L. I. Feodos'eva "Nonlinear deformation of metal knit with rhombic 
structural elements," in: Problems of the Strength of Elements of Devices [in Russian], 
MIP, Moscow (1990). 
B. A. Dryuyanov, Applied Theory of the Plasticity of Porous Media [in Russian], Mashino- 
stroenie, Moscow (1989). 
R. Hill, "General method of metal-working analysis," in: Mechanics. Collected Transla- 
tions of Foreign Literature [in Russian], No. 3 (1964). 
V. V. Skorokhod, Rheological Foundations of Sintering Theory [in Russian], Naukova 
Dumka, Kiev (1972). 
B. I. Geresnev, K. I. Ezerskii, and E. V. Trushin, Physical Foundations and Practical 
Applications of Hydrostatic Extrusion [in Russian], Nauka, Moscow (1981). 

CALCULATION OF THE RESIDUAL STRESSES IN WELDED JOINTS OF HARD ALLOYS 

WITH STEELS BY THE BOUNDARY ELEMENTS METHOD 

V. N. Milenin, I. A. Filimonenko, and L. I. Shkutin UDC 539.3 

We have used the boundary elements method to study the pattern of the residual-stress 
distribution in welded cylindrical specimens of a hard alloy and steel. The experimentally 
observed expansion of steel as a result of internal transformations is prescribed by uniform 
bulk deformation. It has been proved theoretically and experimentally that the concentration 
of the axial tensile stresses on the cylindrical surface in the zone of the welded joint 
causes the hard alloy to fracture. It has also been proved that controlling the cooling 
rate not only reduces the residual stresses and prevents fracturing of the hard alloy but 
also forms a residual capable of compensating, to a degree, for the working stresses in the 
welded member. 

Mechanism of Residual-Stress Formation. Hard alloys are used in industry to fit out 
boring, cutting, stamping, and other tools. Permanent connections are made by welding, brazing, 
anf gluing. Welded joints are strongest. The existence of residual stresses as an inevit- 
able consequence the thermal conditions of the welding, however, weakens the welded joint 
and may cause the hard alloy to fracture. 

The mechanism of stress formation in welded joints is associated with the cooling pro- 
cess and is due to the difference in the thermal expansion coefficients of the materials 
being welded. Reduction of the residual stresses is promised by using various compensating 
metal spacers and powder interlayers and by artificially producing porosity in the zone of 
the joint [i]. As this analysis shows, it is more promising to control the stressed state 
by means of the volume expansion effect that accompanies the structural transformations of 
the steel during cooling. 

The main laws of stress formation during welding of diverse materials can be traced on 
the simplest model of uniaxial strain. During cooling in the free state the thermal strains 
of the steel and the hard alloy are eIAT and ~2AT, respectively (AT is the temperature drop 

and ~i and ~2 are the thermal expansion coefficients (TECs) of the steel and the alloy). If 

s 0 is the structural deformation of the steel and s I and s 2 are the residual strains of the 
steel and the alloy, then the condition for a rigid joint is 

S2 @ a2 AT = ~o + 8t + ~1 AT" 

From this we determine the residual strain of the hard alloy 
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